segunda-feira, 6 de agosto de 2012

Equações Biquadradas


 Observe as equações:
x4 - 13x2 + 36 = 0
9x4 - 13x2 + 4 = 0
x4 - 5x+ 6 = 0

Note que os primeiros membros são polinômios do 4º grau na variável x, possuindo um termo em x4, um termo em x2 e um termo constante. Os segundos membros são nulos.
Denominamos essas equações de equações biquadradas.
Ou seja, equação biquadrada com uma variável x é toda equação da forma:

ax4 + bx2 + c = 0

Exemplos:
x4 - 5x2 + 4 = 0
x4 - 8x2 = 0
3x4 - 27 = 0

Cuidado!
      x4 - 2x3 + x2 + 1 = 0               6x+ 2x3 - 2x = 0            x4 - 3x = 0
As equações acima não são biquadradas, pois numa equação biquadrada a variável x só possui expoentes pares.


Nenhum comentário:

Postar um comentário