segunda-feira, 6 de agosto de 2012

Sistemas de equações do 2º grau


Os sistemas a seguir envolverão equações do 1º e do 2º grau, lembrando de que suas representações gráficas constituem uma reta e uma parábola, respectivamente. Resolver um sistema envolvendo equações desse modelo requer conhecimentos do método da substituição de termos. Observe as resoluções comentadas a seguir:

Exemplo 1



Isolando x ou y na 2ª equação do sistema:
x + y = 6
x = 6 – y

Substituindo o valor de x na 1ª equação:

x² + y² = 20
(6 – y)² + y² = 20
(6)² – 2 * 6 * y + (y)² + y² = 20
36 – 12y + y² + y² – 20 = 0
16 – 12y + 2y² = 0
2y² – 12y + 16 = 0 (dividir todos os membros da equação por 2)

y² – 6y + 8 = 0

∆ = b² – 4ac
∆ = (–6)² – 4 * 1 * 8
∆ = 36 – 32
∆ = 4

a = 1, b = –6 e c = 8
Determinando os valores de x em relação aos valores de y obtidos:

Para y = 4, temos:
x = 6 – y
x = 6 – 4
x = 2

Par ordenado (2; 4) 

Nenhum comentário:

Postar um comentário