sexta-feira, 8 de junho de 2012
Exercícios de Equações de 2º Grau
quinta-feira, 7 de junho de 2012
Equação do 2º grau
Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:
2x + 1 = 0, o expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.
2x² + 2x + 6 = 0, temos duas incógnitas x nessa equação, em que uma delas possui o maior expoente, determinado por 2. Essa equação é classificada como do 2º grau.
x³ – x² + 2x – 4 = 0, nesse caso temos três incógnitas x, em que o maior expoente igual a 3 determina que a equação é classificada como do 3º grau.
Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau, utilizando o método de Bhaskara. Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. Por exemplo, as raízes da equação do 2º grau x² – 10x + 24 = 0 são x = 4 ou x = 6, pois:
Substituindo x = 4 na equação, temos:
x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)
Substituindo x = 6 na equação, temos:
x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)
Podemos verificar que os dois valores satisfazem a equação. Mas como determinarmos os valores que tornam a equação uma sentença verdadeira? É sobre essa forma de determinar os valores desconhecidos que abordaremos a seguir.
Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.
Uma equação do 2º grau possui a seguinte lei de formação ax² + bx + c = 0, onde a, b e c são os coeficientes da equação. Portanto, os coeficientes da equação x² – 2x – 3 = 0 são a = 1, b = –2 e c = –3.
![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sIAtypkuoSJjG0NzhtkTRGt1tlTnsrmXBsvpMzWZEcFdrmoYDL-jDQFR3ywwQ1HukgDmvqrsr3_rkaLLRIjvDi4u2msyhLjqU0rAZvu0gTA-FU8PNZU7RN5fM=s0-d)
No exemplo 2 devemos observar que o valor do discriminante é igual a zero. Nesses casos, a equação possuirá somente uma solução ou raiz única.
Exemplo 3
Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.
? = b² – 4 * a * c
? = 6² – 4 * 10 * 10
? = 36 – 400
? = –364
Nas resoluções em que o valor do discriminante é igual ou menor que zero, isto é, o número seja negativo, a equação não possui raízes reais
2x + 1 = 0, o expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.
2x² + 2x + 6 = 0, temos duas incógnitas x nessa equação, em que uma delas possui o maior expoente, determinado por 2. Essa equação é classificada como do 2º grau.
x³ – x² + 2x – 4 = 0, nesse caso temos três incógnitas x, em que o maior expoente igual a 3 determina que a equação é classificada como do 3º grau.
Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau, utilizando o método de Bhaskara. Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. Por exemplo, as raízes da equação do 2º grau x² – 10x + 24 = 0 são x = 4 ou x = 6, pois:
Substituindo x = 4 na equação, temos:
x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)
Substituindo x = 6 na equação, temos:
x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)
Podemos verificar que os dois valores satisfazem a equação. Mas como determinarmos os valores que tornam a equação uma sentença verdadeira? É sobre essa forma de determinar os valores desconhecidos que abordaremos a seguir.
Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.
Uma equação do 2º grau possui a seguinte lei de formação ax² + bx + c = 0, onde a, b e c são os coeficientes da equação. Portanto, os coeficientes da equação x² – 2x – 3 = 0 são a = 1, b = –2 e c = –3.
Na fórmula de Bhaskara utilizaremos somente os coeficientes. Veja:
![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sPfIqBsaJFSLFfzXbKibSdd5EZGO1-G6Sn4djZBNq4K4Az2788WkZ8UajvNvlK1UlgjEkBVok_UWnPznj7mZYSbvCySx9CObnsyceLNB8TPXCxAbKiJYz4CA=s0-d)
1º passo: determinar o valor do discriminante ou delta (?)
? = b² – 4 * a * c
? = (–2)² – 4 * 1 * (–3)
? = 4 + 12
? = 16
2º passo
![](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tsUxfTQcTf8rrlS8mi2PMC3GmtoofD2rjOYSDHoIuoLBo4SGB6k17MrhzAklD5MbXbyOpMBYMasmPCXvt460w6EluKspOPbK9IByrkLW7qWnAtnNr5n4hdqo0=s0-d)
Os resultados são x’ = 3 e x” = –1.
Exemplo 2
Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.
Os coeficientes são:
a = 1
b = 8
c = 16
? = b² – 4 * a * c
? = 8² – 4 * 1 * 16
? = 64 – 64
? = 0
1º passo: determinar o valor do discriminante ou delta (?)
? = b² – 4 * a * c
? = (–2)² – 4 * 1 * (–3)
? = 4 + 12
? = 16
2º passo
Os resultados são x’ = 3 e x” = –1.
Exemplo 2
Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.
Os coeficientes são:
a = 1
b = 8
c = 16
? = b² – 4 * a * c
? = 8² – 4 * 1 * 16
? = 64 – 64
? = 0
No exemplo 2 devemos observar que o valor do discriminante é igual a zero. Nesses casos, a equação possuirá somente uma solução ou raiz única.
Exemplo 3
Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.
? = b² – 4 * a * c
? = 6² – 4 * 10 * 10
? = 36 – 400
? = –364
Nas resoluções em que o valor do discriminante é igual ou menor que zero, isto é, o número seja negativo, a equação não possui raízes reais
Operações matemáticas com radicais
ADIÇÃO E SUBTRAÇÃO
1º CASO : Os radicais não são semelhantes
Devemos proceder do seguinte modo:
a) Extrair as raízes (exatas ou aproximadas)
b) Somar ou subtrair os resultados
Exemplos
1) √16 + √9 = 4 + 3 = 7
2) √49 - √25 = 7 – 5 = 2
3) √2 + √3 = 1,41 + 1,73 = 3,14
Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica)
2º CASO: Os radicais são semelhantes.
Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de termos semelhantes de uma soma algébrica.
Exemplos:
a) 5√2 + 3√2 = (5+3)√2 = 8√2
b) 6³√5 - 2³√5 = (6 – 2) ³√5 = 4³√5
c) 2√7 - 6√7 + √7 = (2 – 6 +1) √7 = -3√7
MULTIPLICAÇÃO E DIVISÃO
1º Caso: Os radicais têm o mesmo índice
Efetuamos a operação entre os radicandos
Exemplos:
a) √5 . √7 = √35
b) 4√2 . 5√3 = 20√6
c) ⁴√10 : ⁴√2 = ⁴√5
d) 15√6 : 3√2 = 5√3
2º Caso: Os radicais não têm o mesmo índice
Inicialmente devemos reduzi-los ao mesmo índice
Exemplos
a) ³√2 . √5 = ⁶√2² . ⁶√5³ = ⁶√4 . ⁶√125 = ⁶√500
b)⁵√7 : √3 = ¹⁰√7² : ¹⁰√3⁵ = ¹⁰√49/243
1º CASO : Os radicais não são semelhantes
Devemos proceder do seguinte modo:
a) Extrair as raízes (exatas ou aproximadas)
b) Somar ou subtrair os resultados
Exemplos
1) √16 + √9 = 4 + 3 = 7
2) √49 - √25 = 7 – 5 = 2
3) √2 + √3 = 1,41 + 1,73 = 3,14
Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal infinita e não periódica)
2º CASO: Os radicais são semelhantes.
Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de termos semelhantes de uma soma algébrica.
Exemplos:
a) 5√2 + 3√2 = (5+3)√2 = 8√2
b) 6³√5 - 2³√5 = (6 – 2) ³√5 = 4³√5
c) 2√7 - 6√7 + √7 = (2 – 6 +1) √7 = -3√7
MULTIPLICAÇÃO E DIVISÃO
1º Caso: Os radicais têm o mesmo índice
Efetuamos a operação entre os radicandos
Exemplos:
a) √5 . √7 = √35
b) 4√2 . 5√3 = 20√6
c) ⁴√10 : ⁴√2 = ⁴√5
d) 15√6 : 3√2 = 5√3
2º Caso: Os radicais não têm o mesmo índice
Inicialmente devemos reduzi-los ao mesmo índice
Exemplos
a) ³√2 . √5 = ⁶√2² . ⁶√5³ = ⁶√4 . ⁶√125 = ⁶√500
b)⁵√7 : √3 = ¹⁰√7² : ¹⁰√3⁵ = ¹⁰√49/243
Radicais Semelhantes
Radicais semelhantes são os que têm o mesmo índice e o mesmo radicando
Exemplos de radicais semelhantes
a) 7√5 e -2√5
b) 5³√2 e 4³√2
Exemplos de radicais não semelhantes
a) 5√6 e 2√3
b) 4³√7 e 5√7
Exemplos de radicais semelhantes
a) 7√5 e -2√5
b) 5³√2 e 4³√2
Exemplos de radicais não semelhantes
a) 5√6 e 2√3
b) 4³√7 e 5√7
Simplificação de radicais
Simplificar um radical significa escrevê-lo sob a forma mais simplis e equivalentes ao radical dado
1º) CASO: O índice e o expoente do radicando são divisíveis por um mesmo número (diferente de zero)
Exemplos
a) ¹²√3¹⁰ = ¹²⁾²√3¹⁰⁾² = ⁶√3⁵
b) ⁹√7¹² = ⁹⁾³√7¹²⁾³ = ³√7⁴
Conclusão:
Um radical não se altera quando o expoente do radicando e o índice do radical são divididos pelo mesmo número.
Radicais
Sabemos que:
a) √25 = 5 porque 5² = 25
b) ³√8 = 2 porque 2³ = 8
c) ⁴√16 = 2 porque 2⁴ = 16
Sendo a e b numeros reais positivos e n um número inteiro maior que 1 temos por definição que:
ⁿ√a = b -- bⁿ = a
lembramos que os elementos de ⁿ√a = b são assim denominados
√ = sinal do radical
n = índice do radical
a = radicando
b = raiz
nota:
Quando o índice é 2 , usualmente não se escreve.
Exemplos :
a) ²√9 = √9
b) ²√15 = √15
ÍNDICE PAR
Se n é para, todo número real positivo tem duas raízes.
Veja:
(-7)² = 49
(+7)² = 49
sendo assim √49 = 7 ou -7
Como o resultado de uma operação deve ser único vamos convencionar que:
√49 = 7
-√49 = -7
exemplos
a) √25 = 5
b) -√25 = -5
c) ⁴√16 = 2
d) -⁴√16 = -2
NOTA: não existe raiz de um número negativo se o índice do radical for para.
Veja:
a) √-9 = nenhum real porque (nenhum real)² = -9
b) √-16 = nenhum real porque (nenhum real)² = -16
ÍNDICE ÍMPAR
Se n é ímpar ], cada número real tem apenas uma única raiz
Exemplos:
a) ³√8 = 2 porque 2³ = 8
b) ³√-8 = -2 porque (-2)³ = -8
c) ⁵√1 = 1 porque 1⁵ = 1
d) ⁵√-1 = -1 porque (-1)⁵ = -1
Radicando positivo a raiz é positiva
Radicando negativo e índice ímpar a raiz é negativa
Propiedades de potenciação
POTÊNCIA COM MESMA BASE
Para facilitar as operações entre potencias, emprega-se as seguintes propriedades:
1) aⁿ . aⁿ = aⁿ ⁺ ⁿ
exemplo: 2³ . 2⁸ = 2¹¹
2) aⁿ : aⁿ = aⁿ ⁻ ⁿ
exemplo: 3¹⁰ : 3² = 3⁸
3) (aⁿ)ⁿ = aⁿ ˙ ⁿ
exemplo: (7³)⁴ = 7³ ˙ ⁴ = 7¹²
4) (a . b )ⁿ = aⁿ . bⁿ
exemplo (5 . 3)² = 5². 3²
Para facilitar as operações entre potencias, emprega-se as seguintes propriedades:
1) aⁿ . aⁿ = aⁿ ⁺ ⁿ
exemplo: 2³ . 2⁸ = 2¹¹
2) aⁿ : aⁿ = aⁿ ⁻ ⁿ
exemplo: 3¹⁰ : 3² = 3⁸
3) (aⁿ)ⁿ = aⁿ ˙ ⁿ
exemplo: (7³)⁴ = 7³ ˙ ⁴ = 7¹²
4) (a . b )ⁿ = aⁿ . bⁿ
exemplo (5 . 3)² = 5². 3²
Potência
Potência é um produto de fatores iguais.
aⁿ = a .a . a.....................a (n fatores)
O número real a é chamado de base e o número natural n é chamado de expoente da potência.
Exemplos
a) 2⁴ = 2 . 2 . 2 .2 = 16
b) (-7)² = (-7) . (-7) = +49
c) (-2)³ = (-2) . (-2) . (-2) = -8
d) (1/2)² = (1/2) . (1/2) = ¼
1) Toda potência de expoente 1 é igual à base.
a¹ = a
exemplo: (-3)¹ = -3
2) Toda potência de espoente zero é igual a 1.
a⁰ = 1
exemplo: (-5)⁰ = 1
3) Toda potência de expoente negativo é igual ao inverso da potência de expoente positivo.
a⁻ⁿ = 1/aⁿ (a≠0 e n inteiro)
exemplo: 2⁻³ = 1/2³ = 1/8
Desafio de Lógica
Complete todas as informações na tabela, segundo as próximas cardicas.
Veja a resposta em:http://www.profcardy.com/desafios/aplicativos.php?id=11
Teste de Einstein - Powered by
No primeiro caso elevamos o 3 ao quadrado, que dá 9 e depois elevamos 4 à nona potência;
Já no segundo caso elevamos o 4 ao cubo, que dá 64 e depois elevamos 64 à segunda potência:
Os cálculos são diferentes porque os parênteses mudam a ordem normal na qual as operações devem ser realizadas.
Logo:
'Produto de potências da mesma base.Nesse caso conservaremos a base e somaremos os expoentes.
22 . 23 = 2 . 2 . 2 . 2 . 2 = 25 = 32
128 : 126 = 128 – 6 = 122 = 144
'Potência de potência.Nesse caso, conservaremos a base e multiplica os expoentes.
(32)3 = 32 . 3 = 36
'Potência de um produto ou de um quociente.
3 x 4)3 = (3 x 4) x (3 x 4) x (3 x 4)
(3 x 4)3 = 3 x 3 x 3 x 4 x 4 x 4
(3 x 4)3 = 27 x 64
(3 x 4)3 = 1728
Introdução
Esse blog foi solicitado pelo professor de matemática, Anderson Macedo do Centro Educacional Objetivo ,turno vespertino 9ºano.
A equipe é composta por:
Aline Ribeiro
Tainá Richelly
Davi Wesley
Adonai Alisson
João Victor
Evan Victor
A equipe é composta por:
Aline Ribeiro
Tainá Richelly
Davi Wesley
Adonai Alisson
João Victor
Evan Victor
Assinar:
Postagens (Atom)